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Abstract—Equations of motion for antisymmetric cross-ply laminates with thermal effects in a
general state of non-uniform initial stress. where the effects of transverse shear and rotary inertia
are included. are derived by the Virtual Work theorem. The equations are adjusted to a generic
expression by using appropriate transformations. Finally, the thermal stability problems are solved
for a simply-supported rectangular laminate in a state of uniform compressive (or tensile) initial
stress plus initial bending stress combined with uniform thermal compressive stress plus thermal
bending stress. The effects of various parameters on thermal buckling loads are studied.

NOTATION

A, extensional stiffnesses
a.hb lengths of lunminates in the x- and y-directions, respectively
8, coupling stitTnesses
D, bending stiffnesses
n* generalized rigdity ratio
ELE, engineering clastic constants
E* principal rigadity ratio
GGGy engineering shear constants
(Che transverse shear modulus ratio
N layer number of laminates
N non-dimensional initiad stress coctlicient
NT thermal buckling coetlicient
Q. reduced stiffnesses
r aspect ratio of laminates
S laminate thickness ratio
t laminate thickness
Tt displacements of laminates in the x-, y- and z-directions
2,2 tinear coetlicients of thermal expunsion
2’ thermal expansion cocllicient ratio
/ ratio of inittal bending stress to normal stress
B ratio of temperature field
I generilized Potsson's ratio
Vin ¥ Poisson’s ratio
P density of laminates
. angular changes of lines initially normal to the neutral surface
) frequency
[9] frequency coellicient.

INTRODUCTION

The thermal buckling problems for simply supported thin rectangular plates were solved
by using the Raleigh -Ritz energy method by Gossard et al.[t]. The Galerkin method has
been employed to treat thermal buckling problems for simply supported thin rectangular
plates by Van der Neut[2]. Klosner and Forray{3] solved thermal buckling problems of
simply supported plates under arbitrarily symmetrical temperature distributions. Many
other thermal buckling problems for thin plates can be seen in the books by Boley and
Weiner[4] and by Johns[5]. Recently, Prabhu and Durvasula[6, 7] solved thermal buckling
problems of thin skew plates for clamped—clamped and restrained boundary conditions by
using the Galerkin method. Chen ¢ ol.[8] employed the Galerkin method to solve the
thermal stability problems for simply supported transversely isotropic thick plates in a state
of initial stress where the effects of rotary inertia and transversc shear were included.

The equations of motion for a thick plate in a state of initial stress were first made by
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Herrmunn and Armenakas[9]. Brunelle and Robertson{10]. using the Trefftz generalized
stress. derived the equations for a thick plate in an arbitrary state of initial stress by using
two methods. The equations were used to study the static buckling behaviour of a simply
supported thick plate under combined initial compressive stress and initial bending stress
acting in the plane of the plate. Research work dealing with the thermal buckling behaviour
of thick laminates in an arbitrary state of stress field is not found in the literature.

In this paper. the Virtual Work expression of initially stressed antisymmetric cross-ply
thick laminates with thermal effects is derived in a general state of non-uniform initial stress
where effects of transverse shear and rotary inertia are included. Because many elastic
constants are involved in the thick laminate equations, a transformation[1{-18] and some
generalized parameters[19. 20] are used in the problems to minimize the number of elastic
constants, Thus, the generalized form of equations can be obtained. These equations are
then applied to a simply supported rectangular iaminate subjected to uniform initial in-
plane compression (or tension) and an initial bending stress. The temperature distribution
in the laminate is assumed to be uniform plus linear in the transverse direction. The
characteristic equations for determining natural frequencies and thermal buckling loads are
derived by use of the Galerkin method. The influence of generalized material property
parameters and transverse shear modulus and the effect of laminate dimension and the
thermal bending stress combined with initial stresses on thermal buckling loads are inves-
tigated.

THE VIRTUAL WORK THEOREM

The equations of equilibrium and boundary traction conditions in tensor form can be
expressed in terms of Trefftz stress components as[21]

{(6'/ +l‘x.f)’:‘;}.f ‘*'.[v"l = 0 (l)
Pr = (0,40, )thn,. (2)

If relative extensions and shears are small then the final arca and volume are equal to
the initial arca and volume so that (% = ¢, f* = f.and P¥ = P, where t,, £, and P, are
the actual stresses, the body forces and surfuace tractions, respectively, Following a technique
described by Bolotin[22], ¢, and v, are chosen to be the equilibrium large deformation
stresses and displacements {i.e. the initial (deformed) state), and ¢, +o,;and v, 4 4, arcchosen
to be the final state values after perturbations g, and u, have taken place. Additionally, f,
and P, arc initial large deformation quantities which become, respectively, £+ A S+ x, — pii;
and P, +AP,+p, in the final stute. The perturbation stresses g, can be decomposed into
mechanical and thermal parts so that o, = 6,/ + /. [t is gencrally assumed that the terms
o}/u, , and the initial displacement gradient, ¢, ; are small enough to drop. Thus, egns (1)
and (2) can be linearized and simplified as

(e, +0))u,+0,)i+Af +x,~pii, =0 (3)

AP +p, = ((t,+06]u,,+o,)n, #

Oyibo{23] has derived the Virtual Work theorem by multiplying these two equations

by the variation of the displacement components du,, and then integrating the resulting
expression over the initial volume ¥ (eqn (3)) or the surfice area ¢ (cqn {4)). A perturbation
strain energy density, i, defined by o, = 8ii/de, is introduced. Then, by using the product

differentiation rules and the divergence theorem the Virtual Work theorem can be expressed
as

5(5-{-&")4—[ plidu, dV = j (AP, +p.)ou, d0+j (ASf. +x,)ou, dV )
¥ 7, [

where
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5 = 5J‘ qdv = 5_{- (olfe,+ale,) dV
v ¥

(5‘:‘ == 5J %(f,j""“dz’,; us,x“s‘j dV
v

and
& = %(“i.;‘ +u;.).

This form of Virtual Work theorem will be used subsequently in deriving the needed
equations of motion and the associated boundary conditions for antisymmetric cross-ply
laminated plates.

GOVERNING EQUATIONS FOR INITIALLY STRESSED ANTISYMMETRIC CROSS-PLY
THICK LAMINATES WITH THERMAL EFFECTS

The incremental displacement field is assumed to be of the following form:

w (e, y,o1) =y py. )+ oy, v 1) 6)
wy(x,y, 2, 1) = o(x. . 1) +2(x, 3. 1) M
uy{x, p. 1) = w(x, 1 1) (8)

where 1y and u; are the in-planc displacements and u, is the lateral deflection of the neutral
surface. u, ¢, and w are displucements of the neutral surface. ¥ and ¢ account for the effect
of transverse shear.

The incremental stress -displucement relations are taken 1o be those of uncoupled linear
thermal elasticity. For the planc stress problems only o1, and o, exist; all others are zero.
The stress-displacement relations for orthotropic plates are

o’ g @ O 0 0 U ¥
o3 Qi: @nn O 0 0 Uy b,
ey y=1 0 0 Q. 0 0 bd+w, >+ 0 9
ot 0 0 0 Qs O V+w, 0
ot 0 0 0 0 Q] ‘lu,to, Yt
oy = = (1,01 +00,)T, of; = — (2,012 +2:0:)T (10)

where Q; are the so-called reduced stiffnesses.
The resultant forces and moments acting on antisymmetric cross-ply laminates are
obtained by the integration of the stresses in each layer through the laminate thickness

N7
J kY . M A -
(Nr* NV' Q,r! Qt' Nx,\') = Z (a?’l‘ 012, O';’_;, Oy 6:{.') d~
kwlJZy
N (2,
(M M, Q2Q2 M) = 3 (ot ath, 0%, 031 0tz ds
kw1d7
Z
R

N
(NONT MU M M M) = ) (671 00) (1.2,2%) d:

kot 2y
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Fig. |. Rectangular laminated plates subjected to uniform stress plus bending stress in the x-direction
with untform temperature distrtbution plus lincar temperature difference gradient in the z-direction.
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By expanding the tensor terms of the Virtual Work theorem in egn (5), using eqns (6) -
(11y and the shear correction factor[24], and by utilizing some previous material constant
definitions due to Tsai[25] and integrating through the laminate thickness, the Virtual Work
theorem can be obtained.

Consider a simply supported antisymmetric cross-ply thick laminate in a state of initial
stress, The state of initial stress is

1 =oy+2za,/t (12)

with all other initial stresses assumed to be zero. oy and a4, are titken to be constants so
that the initial stress field is uniform. It is comprised of a tension (or compression) stress
plus bending stress. The plate 1s subjected to a temperature ditference and the temperature
difference distribution is

T=T,+2:T,/t (13)

where Ty and T, are taken to be constunts so that the temperature distribution is a function
of the z-coordinate only. This is a possible temperature distribution for plane stress thermal
elastic problems{4]. Then, the laminate is subjected to thermal compressive stresses and
thermal bending stresses in the x- and r-directions due to the temperature difference in the
laminate. This can be seen in Fig. 1. From eqn (11) the only non-zero initial stresses are

IVF‘» = loy
M. = UpN,

M*= Ne2N, (14)
where ff = o /ay. Also, in this paper, it is assumed that only laminates comprised of

laminae of equal thickness are dealt with. From eqn (11). the only non-zero thermal stresses
are
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(NONT) = INT(L £ LBTIN)
(MI M) = &Nl BT +31,/N)
(M2 MXT) = SNTEWL £3LBT (N =2)/NY) (15

where

N'i=1l. ol=-x.0\Ty. B"=Ty/Ty. |, =@eD*JE*+E*)+ (2" +eD*/E®).
[3 = (IrgD*V/E*+E*)—(1T+CD*\/E*). 1T = 1“/1:

and

D,,__Ql:'*':Qoq eD* = Qi . 92

= 0% ¢D* = ., E .
\/(QIIQ:.‘.) \/(QIIQZ‘.’) QH

By taking variation with respect to the displacement components of the Virtual Work
thcorem and substituting egns (12)-(15) into the equation of the Virtual Work theorem,
the governing equations and the associated boundary conditions for antisymmetric cross-
ply laminated plates subjected to the initial stress and the temperature difference distri-
bution, where the effects of transverse shear and rotary inertia are included. are derived as
- (A %] + ‘vi + N{)u..n’ - (Aﬁh + N{)I‘.l'l' - (‘4 t2 + Aﬁﬁ)v.w

—Bn+M A+MDY (—M)Y,, +ptu, =0 (16)
_(AIZ +"'M\)“.w_(‘4{m+Nr+1v\{-)u.n-(f‘ [} +N:‘)U.rv
- (A-,x + A/’,Z.)(l).n‘ - (A[yr— Bl l)(b.yv +/)’U.tt = 0 (17)

— (A + N+ NZI)H‘.\I — (At anlv-)“',,rr ~As = Ay, +ptw, =0 (18)

—(8,, + M, +A”‘r)“‘n- —A/’t".“,|'v+/144w.r + Ay —(Dy, +Mf+/w,:r)‘//,n

_(Dbh + AI.'I‘)'//.;';'_ (DIZ+D(\6)(I>..\'V+ 'lllp']ll,,n = O (19)

—_ (1‘-[‘. + x‘l {)I",“ ol (1\’["_ B] |)l'_“. -+ A 44"'“, bl (Dl 2 + D(,o)lp_[}.

il
o

+A44(/> - (D(yh + ‘{i\’.l + “/’:r)(b.n —(DI | + A’I,‘ r)(l).n' + ilip’](b.n (20)

with boundary conditions:

on x = constant edges

No=(dy+N+NDYu +A e +By+M +MD)W +NT=0, =0, w=0

M= By +MAMDu +D +M+MW +Did +MI =0, ¢=0; (1)
on ) = constant edges

N, = A,:u_,-%—(A,,+1V;,r)(‘__,+(/\l,r— B\, +N =0, u=0, w=0
M, = (MI=B\)e,+ D+ Dy + MG +MT =0, y=0.  (22)
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SOLUTIONS OF THE EQUATIONS OF MOTION

Assuming the displacement field is in the following form:

A(u. U, W, w- ¢) = Z Z (umn‘ l‘mn- Woins wmn'ﬁv ¢mnﬁ)(COSn S:CO~ SKSI' COSI‘ S: CO) elwr

m=1{3n=1))
(23)
where
. mm  _ nm _ N
m=-—, Ai=-—, C,=cosnx, S =sinnAy
a b
The thermal force N7 in egns (15) is expressed in double Fourter series form
- X . omnx | nmy
N'= % ¥ N, sin sin —— (24)
m=13n=11 a b
where
I6NT
Npw = - (mn=1,3,..).
nemn

Since the problem has non-homogencous boundary conditions due to thermal effects, the
displacement ficld of eqn (23) cannot satisfy both force boundary conditions and moment
boundiry conditions. The thermal term is expressed as eqn (24), then eqns (23) and (24)
satisfy both kinematic and kinctic boundary conditions. The Galerkin method is used to
solve this static thermal buckling problem of a simply supported thick laminate under
initial stresses. A three term Ritz Galerkin method is employed to obtain the following
characteristic equations for the determination of the buckling loads and natural frequencies.
Nondimensionalizing the characteristic equations, we can obtain

C, X, =0, ij=115 (25)
where
Xy = Uy, Xy =My, Xy = Uy, Xy =V, Xs =V, Xg =Usyg,
Xy =W Xy =Wy Xo =Wy, X =Wy, Xy =W, Xa= ¢,
Xy =g, X =¢n, Xis =y
and

C,=C,(D*E*G*e.r,S.N, 2" . BT N.N".Q).

The coceflicients are similar to those of Ref. [18], although they are much more complicated
because of thermal effects. The dimensionless parameters used in eqn (25) are
A=(=g)D*JE*(+E*)., A*=(1+e)D*JE*/(1+E*),
F=({=ED")G*/(S'(1+E*). F*=(E*=1)/(SN(1+E™")).
_ N? __ N7h? wuh\/( pt )
N = "*;‘1 . Nr =y, Q=— —~ }. = a/b,
=D D, o~ N\D, ) "7
S=1t/b. d =0L+0LBTIN, d,=ri,—-LATIN),
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dy=1,8T+3l-/N. d,=r({,fT=31/N),
di =1, +30LBT(N*=2/N>, do=r(l,=3LBT(N*=2)/N?),
G* = (G +Gy)/E,.

It is easy to derive the two-term and one-term Galerkin solution from eqn (25) by reducing
the order of matrix C,; and X, appropriately.
The basic parameters which exist in eqn (25) include the following group:

(1) parameters of laminate dimension: r, S, V;

(2) parameters of material properties: D*, g, E*, G*, a7 ;
(3) parameters of initial stress: N, B:

(4) parameters of thermal buckling: N7, ",

The key parameters of this analysis are generic terms D*, ¢, E*,and 27, called the generalized
rigidity ratio. generalized Poisson’s ratio, principal rigidity ratio and ratio of principal
thermal expansion coefficients, respectively. Their limits for almost all orthotropic materials
have been established as follows[19,20]: 0 < D* < 1, 0.12<£<0.65, 0 < E*< I, and
0 < 2" < 1 (for isotropic materials, D* = l.g¢ =v, E* = l,and a” = 1).

RESULTS AND DISCUSSION

The thermal buckling problems for an antisymmetric cross-ply laminate are studied
by letting Q = 0. From the numcerous problems solved, only a few typical cases will be
sclected for discussion. These cases will illustrate the salient features of the ways that the
thick taminates considered here behave.

First, the laminates are reduced to transversely isotropic thick plates and thin plates,
and the results shown in Fig. 2 arc compared with those of Chen et ol [8). In the first case
the plates are assumed to be thin by taking t/a = 0.01 and At/b*G = 0.0001. The large valuc
of G implies that there is little transverse shearing. It is expected that the results will
correspond to the classical thermal buckling theory of thin plates. In the second case the
trunsversely isotropic thick plates are considered and the thermal bending is taken into
account. It can be scen that the present results agree with those solved by Chen er al [8].
These two comparative results are to be expected since egns (16)-(20) can be reduced casily

4 r
x  Thin plate theory
+ Thick plate theory
—— Present result
3 -
) %a.‘:
z Q 2r
‘| -
1 1 1 1 J
0 1 2 3 4 5

a/b
Fig. 2. Comparison of Chen e al’s results with the present rcesults (A = Erj(1—v7),
D = EC12(1 =v®), G =Gy =G,): Curve 1, t/a=001, At/p*G = 0.0001, BT =0; Curve 2.
tia = 0.1, At/b°G = 0.05, 7 = 10.
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Fig. 3. Thermal buckling coctlicient vs r for various Swhen D* =03, e =03, E* =03, G* = 0.3,
AT=03IN=4 N=0.fi=0.f" =0

to equations for initially stressed transversely isotropic thick plates with thermat etfects and
can be further reduced to cquations of Classical Plate Theory.

Then, a composite plot of the thermal buckling loads for various thickness ratios is
given for antisymmetric cross-ply faminates in Fig. 3. [t is shown that the thermal buckling
loads decrease with an increase in laminate thickness. The results of § = 0.0 compare with
the classical plate solutions as used in Fig. 2. The thermal buckling coeflicient decreases
substantially when S gets larger than 0.05. This means that Classical Lamination Theory
is inaccurate for S larger than 0.05. The curves in Fig. 4 reveal the cffects of coupling
stiffnesses on the laminate. When N increascs, the coupling stiffness tends towards zero[26]
and the thermal buckling loads of N = 100 approach the orthotropic solutions using
Classical Lamination Theory. The thermal buckling toads apparently decrease when N gets
smaller than 6 where the coupling effects cannot be neglected.

The effects of laminate material propertics on thermal buckling coeflicients are pre-
sented in Figs 5-7. Figures S and 6 show that the thermal buckling coeflicients decrease
with increasing £* and a', respectively, along a fixed D* curve and the cffeets of D* on
thermal buckling coetlicients are not so apparent as those of £* and x'. However, due to

4
Y
T3 N - 100
N-6
i 7
\
N -4
N=2
2 1 i I J
0 1 2 3 4

Fig. 4. Thermal buckling cocetlicient vs r for various ¥ when D* =032 =03 E* = 03.G* = 0.3,
¥ =03,85=01.N=0,8=0,8"=0
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0 0.2 0.4 0.6 0.8 1
E.
Fig. 5. Thermal buckling coeflicient vs E* for various D* whene = 03.G* =03, 2" =03 N =4,
S=0LN=08=08"=0,r=2

the bounded limits of D* values, the thermal buckling coefficients of composite materials
with other D* values can only be estimated from these charts. Figure 7 depicts the thermal
buckling coetlicients reduced almost lincarly with increasing ¢ for a fixed G*. [t can also be
scen that the thermal buckling coeflicients increase with an increase in transverse shear
modulus G*, especially, for small values of G* (G* < 1). A large value of G* implics that
there is little transverse shearing. Therefore, as G* gets larger, the results will compare with
the classical thermal buckling solutions.

Plots are made of — N 7 vsinitial stress A in Fig. 8. [Uis shown that the thermal buckling
foads increase almost lincarly with increasing N for a fixed value of D*. It is because the
compressive stress will reduce the strength of the laminate, As N7 = 0, i.e. the thermal effect
is excluded, the laminate will buckle due to initial compressive stress. In Fig. 9, plots are
made of — N7 vs 7 for various N and f. It is shown that the thermal buckling strength
will be reduced when the thermal moment is increased. It can be seen that the cffects of
initial moment on thermad buckling loads are not as significant as those of thermal moment.

0 02 G4 06 08 1

r
"

Fig. 6. Thermal buckling coefficient vs 27 for various D* whene =03, E* = 0.3, G* =03, r = 2,
N=4,5=018=00=04"=0

3AS 24:10-¢
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0 1 2 3 4
G

Fig. 7. Thermal buckling coctlicient vs G* for various e when D* = 0.3, E* =03, 2" =03, r =2,
N=d S§S=01.N=0.8=0fi"=0.

CONCLUSION

The governing equations of the thermal clastic antisymmetric cross-ply thick laminate
have been derived. The transverse shear deformations and rotary inertia are considered for
this thick laminate formulation. These can be reduced subsequently for a thermal elastic
transversely isotropic thick plate and for a thin plate. The numerical results show that the
present Thick Lamination Theory reasonably corresponds to transversely isotropic Thick
Plate and Classical Thin Plate Theory.

The preceding results reveal the points given below.

(1) The thicker the laminate is the fower the thermal buckling load.

(2) The thermal buckling load increases with an increase of the number of layers.

(3) The thermal buckling loud decreases greatly with increasing £* or 2.

(4) The D* does not have significant effects on thermal stability but it provides bounded
values of thermal buckling coctlicients for all orthotropic materials.

(5) The larger the generalized Poisson’s ratio &, the lower the thermal buckling load.

(6) The transverse shear effects can decrease the thermal stability.

Fig. 8. Thermal buckling coefficient vs N for various D* whene = 0.3, £* =0.3.G* = 03,27 = 0.3,

r=l.S=018=0f=0p =0
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4

1 L H 1 J
9 10 20 30 40
BT

Fig. 9. Thermal buckling coefficient vs 87 for various N and § when D* = 0.3, 2 =03, £* = 0.3,
G*=032"=03r=N=45=0.1.

(7) The thermal buckling loads increase almost linearly with an increase of initial stress
from compression to tension.

(8) The thermal bending moments significantly reduce the thermal buckling load of
the thick laminate. However, the initial bending stresses have little effects on thermal
stability.

The results presented are limited by the features of antisymmetric cross-ply laminates.
In addition, the laminate is initially assumed to be flut. From the procedure used to fabricate
most current-day laminates, a six-layer antisymmetric cross-ply laminate would actually be
cylindrical[27]. Howcever, the results indicate some of the many interesting effects that can
be studied with this analysis. There is a lot of room for future study of the effects that other
thermald stress ficlds and other laminated plates would have on this and other geometries.,
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